Minerals play a crucial role in maintaining hormone balance and supporting the proper functioning of the endocrine system. Serving as essential cofactors for enzymes involved in hormone synthesis, building blocks for hormones, and facilitating receptor binding, the transmission of hormone signals, and subsequently cellular responses. Additionally, minerals support antioxidant defense systems that protect endocrine glands from oxidative stress, preserving their functionality. Zinc in particular stands out as a crucial mineral in hormonal health, but approximately 17% of the global population is zinc deficient.
[signup]
Overview of Zinc in the Body
Zinc is the second most abundant trace mineral in the human body and is considered essential. An essential mineral refers to a mineral that is required for normal physiological functioning, but because the body cannot produce it, must be obtained through the diet. Despite being a trace mineral, meaning the body only needs small amounts of it compared to major minerals such as calcium, zinc is necessary for the proper functioning of at least 100 enzymes in the body. It participates in processes like DNA synthesis, immune function, and wound healing. It also plays a role in maintaining the structural integrity of proteins and influencing gene expression. Particularly noteworthy is zinc's involvement in the endocrine system, where it acts as a crucial component for the synthesis and regulation of hormones.
Zinc and Hormone Regulation
Zinc participates in the production, secretion, and function of key hormones associated with important endocrine glands, including the thyroid, pancreas, and reproductive organs. Produced in the thyroid gland, thyroxine (T4), and triiodothyronine (T3) are crucial for regulating metabolism, energy production, and overall growth. The enzyme thyroperoxidase, which is responsible for incorporating iodine into thyroid hormones, requires zinc for its activity. This step is essential for the production of T4 and T3. The enzyme responsible for this conversion of T4 to T3, which is the more active form of thyroid hormone, is called 5'-deiodinase.
It also requires zinc for its activity. Adequate zinc levels support proper thyroid receptor binding and activation, ensuring the effective transmission of thyroid signals to regulate metabolism and other physiological processes. The thyroid gland is susceptible to oxidative stress, and zinc, as an antioxidant, helps protect thyroid cells from damage caused by free radicals (25, 31).
Zinc is a vital component in the synthesis of insulin. Beta cells within the pancreas contain high concentrations of zinc. It serves as a cofactor for insulin synthesis enzymes. Zinc also modulates the release of insulin in response to changes in blood glucose levels. When blood glucose rises after a meal, beta cells release insulin to facilitate the uptake.
Zinc can be obtained through a variety of dietary sources. Shellfish, beef, and poultry are rich sources of zinc and it is also found in plant foods such as legumes, nuts, seeds, and whole grains. However, plant foods also contain phytates, which can decrease their absorption. The amount of zinc absorbed from food ranges from 5% to more than 50%, depending on the amount of plant-based foods (and thus of phytate) in the diet (35).
In cases where individuals have difficulty meeting their zinc needs through diet alone, supplementation may be considered. Zinc is included in most multivitamins or can be taken as a stand-alone supplement. Zinc is available in several forms. Zinc sulfate is the least expensive form, but it is the least easily absorbed and may cause stomach upset. More easily absorbed forms of zinc include zinc picolinate, zinc citrate, zinc acetate, zinc glycerate, and zinc monomethionine.
Interactions and Considerations in Zinc Supplementation
When considering zinc supplements, it's important to be aware of potential risks, considerations, and interactions that may arise. To navigate these complexities and ensure the appropriateness of a zinc regimen, individuals should always work with a healthcare provider. Determining the right type and dosage of zinc requires an understanding of individual health conditions, dietary habits, and potential interactions with medications. Zinc supplementation may not be necessary for everyone, as obtaining nutrients from a balanced diet is generally preferred and excessive zinc intake can lead to adverse effects.
Possible side effects of zinc supplementation include stomach upset, nausea, vomiting, and a metallic taste in the mouth. High doses of zinc can cause dizziness, headache, drowsiness, increased sweating, loss of muscle coordination, alcohol intolerance, hallucinations, and anemia. Taking zinc supplements with meals can help to avoid GI upset. It should not be taken with iron or calcium as these minerals can interfere with absorption.
Doses of 40 mg a day or less are considered a safe amount to take, but safety over extended periods has not been determined. Taking too much supplemental zinc or copper can cause a deficiency in the other. This interaction should be considered during zinc supplementation.
Certain medications also influence zinc levels. These medications include amiloride, ACE-inhibitors certain types of antibiotics, penicillamine, deferoxamine, and diuretics. Zinc supplementation should be discussed with your provider if you are prescribed any of these medications (36).
[signup]
How Zinc Influences Hormonal Health: Final Thoughts
As a mineral cofactor influencing numerous enzymes and bodily reactions, zinc plays a pivotal role in overall hormone function and balance. Given the intricacies of mineral interactions within the body and unique variations in individual mineral requirements, seeking professional guidance in zinc supplementation is important. Healthcare providers assist in the creation of personalized approaches to maintaining optimum zinc status and mineral balance that avoid any potential risks or adverse effects.
Lab Tests in This Article
References
1. Abedini, M., Ghaedi, E., Hadi, A., Mohammadi, H., & Amani, R. (2019). Zinc status and polycystic ovarian syndrome: A systematic review and meta-analysis. Journal of Trace Elements in Medicine and Biology, 52, 216–221. https://www.sciencedirect.com/science/article/abs/pii/S0946672X18306734?via%3Dihub
2. Al-Abdulaziz, B. A., Humoud, M. N., Kadhum, H. S., Khalaf, Q. H., Thuwaini, M. M., & Abdulnabi, Y. A. (2022). Correlation of Zinc Serum level with Hypo-and Hyperthyroidism. Zenodo (CERN European Organization for Nuclear Research). https://zenodo.org/records/7369239
3. Baltaci, A. K., Moğulkoç, R., & Baltacı, S. B. (2019). Review: The role of zinc in the endocrine system. PubMed, 32(1), 231–239. https://pubmed.ncbi.nlm.nih.gov/30772815/
4. Belay, A., Gashu, D., Joy, E. J., Lark, R. M., Chagumaira, C., Likoswe, B. H., Zerfu, D., Ander, E. L., Young, S. D., Bailey, E. H., & Broadley, M. R. (2021). Zinc deficiency is highly prevalent and spatially dependent over short distances in Ethiopia. Scientific Reports, 11(1).
5. Bucci, I., Napolitano, G., Giuliani, C., Lio, S., Minnucci, A., Giacomo, F. D., Calabrese, G., Sabatino, G., Palka, G., & Monaco, F. (1999). Zinc sulfate supplementation improves thyroid function in hypozincemic down children. Biological Trace Element Research, 67(3), 257–268. https://link.springer.com/article/10.1007/BF02784425
6. Christie, J. (2022, December 6). The ultimate guide to thyroid hormones. Rupa Health. https://www.rupahealth.com/post/a-complete-guide-to-thyroid-hormones-a-functional-medicine-approach
7. Chu, Q., Chi, Z.-H., Zhang, X., Liang, D., Wang, X., Zhao, Y., Zhang, L., & Zhang, P. (2016). A potential role for zinc transporter 7 in testosterone synthesis in mouse leydig tumor cells. International Journal of Molecular Medicine, 37(6), 1619–1626. https://www.spandidos-publications.com/10.3892/ijmm.2016.2576
8. Cloyd, J. (2023, March 7). An integrative medicine approach to fatigue. Rupa Health. https://www.rupahealth.com/post/an-integrative-medicine-approach-to-fatigue
9. Cloyd, J. (2023, May 17). A functional medicine constipation protocol: Testing, nutrition, and supplements. Rupa Health. https://www.rupahealth.com/post/a-functional-medicine-constipation-protocol-testing-nutrition-and-supplements
10. Cloyd, J. (2023, May 24). A functional medicine hypothyroidism protocol: Comprehensive testing, supplements, and integrative nutrition. Rupa Health. https://www.rupahealth.com/post/a-functional-medicine-hypothyroidism-protocol-comprehensive-testing-supplements-and-integrative-nutrition
11. Cloyd, J. (2023, July 20). A functional medicine PCOS protocol: Comprehensive testing, therapeutic diet, and supplements. Rupa Health. https://www.rupahealth.com/post/a-functional-medicine-pcos-protocol-comprehensive-testing-therapeutic-diet-and-supplements
12. Croxford, T. P., McCormick, N. H., & Kelleher, S. L. (2011). Moderate zinc deficiency reduces testicular ZIP6 and ZIP10 abundance and impairs spermatogenesis in mice. The Journal of Nutrition, 141(3), 359–365. https://www.sciencedirect.com/science/article/pii/S0022316622025135
13. Duncan, A., Yacoubian, C., Watson, N., & Morrison, I. (2015). The risk of copper deficiency in patients prescribed zinc supplements. Journal of Clinical Pathology, 68(9), 723–725. https://jcp.bmj.com/lookup/doi/10.1136/jclinpath-2014-202837
14. Farooq, D., Alamri, A., Alwhahabi, B., Metwally, A., & Kareem, K. (2020). The status of zinc in type 2 diabetic patients and its association with Glycemic Control. Journal of Family and Community Medicine, 27(1), 29. https://journals.lww.com/10.4103/jfcm.JFCM_113_19
15. Foroozanfard, F., Jamilian, M., Jafari, Z., Khassaf, A., Hosseini, A., Khorammian, H., & Asemi, Z. (2015). Effects of zinc supplementation on markers of insulin resistance and lipid profiles in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Experimental and Clinical Endocrinology & Diabetes, 123(04), 215–220. https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0035-1548790
16. Garner, T. B., Hester, J. M., Carothers, A., & Diaz, F. J. (2021). Role of zinc in female reproduction. Biology of Reproduction, 104(5), 976–994. https://academic.oup.com/biolreprod/article/104/5/976/6141166
17. Henry, E. (2021, September 29). Are your patients insulin resistant? 4 ways to test. Rupa Health. https://www.rupahealth.com/post/insulin-resistance-testing
18. Jamilian, M., Foroozanfard, F., Bahmani, F., Talaee, R., Monavari, M., & Asemi, Z. (2015). Effects of zinc supplementation on endocrine outcomes in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Biological Trace Element Research, 170(2), 271–278. https://link.springer.com/article/10.1007/s12011-015-0480-7
19. Jayawardena, R., Ranasinghe, P., Galappatthy, P., Malkanthi, R., Constantine, G., & Katulanda, P. (2012). Effects of zinc supplementation on diabetes mellitus: A systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 4(1). https://dmsjournal.biomedcentral.com/articles/10.1186/1758-5996-4-13
20. Khazdouz, M., Djalalinia, S., Sarrafi Zadeh, S., Hasani, M., Shidfar, F., Ataie-Jafari, A., Asayesh, H., Zarei, M., Gorabi, A. M., Noroozi, M., & Qorbani, M. (2019). Effects of zinc supplementation on cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled trials. Biological Trace Element Research, 195(2), 373–398.https://link.springer.com/article/10.1007/s12011-019-01870-9
21. Kim, J., & Ahn, J. (2014). Effect of zinc supplementation on inflammatory markers and adipokines in young obese women. Biological Trace Element Research, 157(2), 101–106. https://link.springer.com/article/10.1007/s12011-013-9885-3
22. Li, Y. V. (2013). Zinc and insulin in pancreatic beta-cells. Endocrine, 45(2), 178–189. https://link.springer.com/article/10.1007/s12020-013-0032-x
23. Mahmoodianfard, S., Vafa, M., Golgiri, F., Khoshniat, M., Gohari, M., Solati, Z., & Djalali, M. (2015). Effects of zinc and selenium supplementation on thyroid function in overweight and obese hypothyroid female patients: A randomized double-blind controlled trial. Journal of the American College of Nutrition, 34(5), 391–399. https://www.tandfonline.com/doi/full/10.1080/07315724.2014.926161?cookieSet=1
24. Maxfield, L., Shukla, S. S., & Crane, J. (2023). Zinc Deficiency. In StatPearls. essay, StatPearls Publishing.
25. Maxwell, C., & Volpe, S. L. (2007). Effect of zinc supplementation on thyroid hormone function. Annals of Nutrition and Metabolism, 51(2), 188–194. https://www.karger.com/Article/FullText/103324
26. McDonald, C. M., Suchdev, P. S., Krebs, N. F., Hess, S. Y., Wessells, K. R., Ismaily, S., Rahman, S., Wieringa, F. T., Williams, A. M., Brown, K. H., & King, J. C. (2020). Adjusting plasma or serum zinc concentrations for inflammation: Biomarkers reflecting inflammation and nutritional determinants of anemia (Brinda) project. The American Journal of Clinical Nutrition, 111(4), 927–937. https://www.sciencedirect.com/science/article/pii/S0002916522010851
27. Nygaard, S. B., Larsen, A., Knuhtsen, A., Rungby, J., & Smidt, K. (2014). Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells. BMC Research Notes, 7(1). https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-7-84
28. Rabinovich, D. (2023). Zinc. In Y. Smadi (Ed.), StatPearls. essay, StatPearls Publishing.
29. Ranasinghe, P., Pigera, S., Galappatthy, P., Katulanda, P., & Constantine, G. R. (2015). Zinc and diabetes mellitus: Understanding molecular mechanisms and clinical implications. DARU Journal of Pharmaceutical Sciences, 23(1). https://link.springer.com/article/10.1186/s40199-015-0127-4
30. Sandström, B. (2001). Diagnosis of zinc deficiency and excess in individuals and populations. Food and Nutrition Bulletin, 22(2), 133–137. https://journals.sagepub.com/doi/10.1177/156482650102200203
31. Severo, J. S., Morais, J. B., de Freitas, T. E., Andrade, A. L., Feitosa, M. M., Fontenelle, L. C., de Oliveira, A. R., Cruz, K. J., & do Nascimento Marreiro, D. (2019). The role of zinc in thyroid hormones metabolism. International Journal for Vitamin and Nutrition Research, 89(1–2), 80–88. https://econtent.hogrefe.com/doi/10.1024/0300-9831/a000262?cookieSet=1
32. Sweetnich, J. (2023, April 5). Health benefits of zinc. Rupa Health. https://www.rupahealth.com/post/how-to-test-zinc-levels
33. Sweetnich, J. (2023, April 25). Complementary and integrative medicine approaches to type 2 diabetes management. Rupa Health. https://www.rupahealth.com/post/complementary-and-integrative-medicine-approaches-to-type-2-diabetes-management
34. Te, L., Liu, J., Ma, J., & Wang, S. (2023). Correlation between serum zinc and testosterone: A systematic review. Journal of Trace Elements in Medicine and Biology, 76, 127124. https://www.sciencedirect.com/science/article/abs/pii/S0946672X22002048
35. U.S. Department of Health and Human Services. (n.d.). Zinc. NIH Office of Dietary Supplements. https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/#h5
36. Weiss, M., & Philipson, L. H. (2014). Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships. In D. F. Steiner (Ed.), EndoText. essay, MDText.com, Inc.
37. Zinc. Mount Sinai . (n.d.). https://www.mountsinai.org/health-library/supplement/zinc
38. Zinc. The Nutrition Source. (2023, March 7). https://www.hsph.harvard.edu/nutritionsource/zinc/